Neural Network & Learning Visualization
Learning Parameters
๐ Current Step
Ready to start backpropagation
๐ฅ Loss Function
Mean Squared Error (MSE): L = ยฝ(y_pred - y_true)ยฒ
Current Loss: 0.00
๐ Gradient Flow
Watch how gradients flow backward through the network
โ๏ธ Weight Matrix
๐ข Input โ Hidden Weights
๐ Hidden โ Output Weights
โ๏ธ Chain Rule in Action
The chain rule allows us to compute gradients for nested functions:
โL/โw = โL/โy ร โy/โz ร โz/โw
Where:
- L = Loss function
- y = Network output
- z = Weighted sum before activation
- w = Weight parameter